Sound Spectra

- The frequencies of all the sinusoidal component that make it up
- The amplitude of each sinusoidal component present

Periodic Complex Waves

- The repetition frequency determines the pitch
- The Fourier components of a complex wave belong to a harmonic series, with the repetition frequency of this complex wave as the fundamental frequency
- The repetition frequency is the largest common factor of all the frequencies present in the spectrum

What are the repetition frequency of the following waves?

- A: 10, 20, 30 and 40 Hz
- B: 5, 6, 10 and 12 Hz
- C: 6, 12 and 18 Hz
- D: 18, 24, and 60 Hz

Ohm's law of hearing

• The ear is sensitive to the amplitudes but not the phases of the harmonics of a complex wave

Musical Instruments

- Percussion
- String
- Wind
- Human voice

Percussion Instruments

- Striking a hard object
 - Deformation of the object
 - Pass on to adjoining material
- Include:
 - Membranophones: vibration of a flexible membrane mounted on some rigid frame
 - Metallophones: vibration of metallic objects
 - Xylophones: vibration of wooden objects

Human Xylophone

• <u>http://www.youtube.com/watch?</u> <u>v=IS52az45ZIA&feature=related</u>

Mouth Percussion

• <u>http://www.youtube.com/watch?</u> v=EYvKE0Wfqp8&feature=related

Properties of the Sound

- Loud or Soft
 - Amplitude of the strike
 - Surface area
- Transient
- No clear pitch in most cases
 Specific shapes
- Frequency depends on
 - Size– Vibration speed
 - material
 - mass or inertia

- Two bars of different length but made of the same material
 - Short one has higher frequency
- Two bars of the same size and shape, but different material
 - Steel and cast iron, steel is stiffer

Natural modes of vibration

- The frequency or frequencies at which an object tends to vibrate with when disturbed
- Musical instruments and other objects are set into vibration at their frequency when a person hits, strikes, strums, plucks or somehow disturbs the object. The input of energy disturbs the particles and forces the object into vibrational motion at its natural frequency

Natural modes of a circular membrane

- Node (point of no displacement)
 Nodal diameter
 - Circular nodal lines
- Figure 9-16 (+ -: move at opposite direction)
- Figure 9-17

http://en.wikipedia.org/wiki/Vibrations of a circular drum http://www.youtube.com/watch?v=s9GBf8y0IY0

Drums don't produce definite pitch

• The many natural mode frequencies do not belong to a harmonic series

Tympani

- Membrane on kettle
 - Mode 1 dissipates fast
 - Mode 4, 6, 8, 9 (with circular nodal lines) are less excited (striking point at half to three-fourths of the way out)
 - Air lowers the frequencies
- ➔ produces frequencies within a harmonic series

Striking points and vibration recipes

- Strike in the center dull thump
- The center is on the nodal lines of may natural modes (2, 3, 5, 6, 7, 8,...); only those few circularly symmetric modes (1, 4, 9..) are excited. Therefore the sound lacks richness and brightness because so many of the drum's natural frequencies are missing.

Striking points and vibration recipes

- A large, soft object hits a drumhead wntirely within one + or – region of some mode, the mode is strongly excited
- If the area struck includes both + and regions, the mode is excited little

Striking points and vibration recipes

- Hard mallets exert a large pressure on a tiny area and excite many modes bright sound
- Soft mallets exert smaller pressure over a larger area of contact and excite only the lower modes duller sound